

Symmetry and quantum mechanics

Groups and representations

• Reducible representation:

$$\Gamma' = S^{-1}\Gamma S = \begin{pmatrix} \Gamma_1 & \mathbf{0} & \cdots \\ \mathbf{0} & \Gamma_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} = \Gamma_1 \oplus \Gamma_2 \oplus \dots$$

• Direct (or Kronecker) product of representations:

$$U(g_{i})(|\psi_{n}^{(1)}\rangle|\psi_{k}^{(2)}\rangle) = \left(\sum_{m} [\Gamma_{1}(g_{i})]_{mn} |\psi_{m}^{(1)}\rangle\right) \left(\sum_{l} [\Gamma_{2}(g_{i})]_{lk} |\psi_{l}^{(2)}\rangle\right)$$
$$= \sum_{ml} [\Gamma(g_{i})]_{ml, nk} |\psi_{m}^{(1)}\rangle|\psi_{l}^{(2)}\rangle$$

Shorthand notation:

J. Joos (UGent)

$$\Gamma_{ml, nk} = (\Gamma_1 \otimes \Gamma_2)_{ml, nk} = \Gamma_{1, mn} \Gamma_{2, lk}$$

Symmetry

Symmetry and quantum mechanics Groups and representations

- Physical observable: $\mathcal{A} |\psi_n\rangle = a_n |\psi_n\rangle$
- If \mathcal{A} is invariant for G:

$$[\mathcal{A}, U(g_i)] = \mathcal{A}U(g_i) - U(g_i)\mathcal{A} = 0$$

then

$$\mathcal{A}U(g_i) \left| \psi_n \right\rangle = a_n U(g_i) \left| \psi_n \right\rangle$$

• Eigenstates of an operator can be labeled by representations of symmetry group

6 / 61

WFS-2025

Terminology • Direction [uvw]: lattice vector $\vec{t} = u\vec{a} + v\vec{b} + w\vec{c}$ with smallest integral u, v, w without common divisor $[\overline{2}33]$ [111] $[\overline{1}00]$ [001] [120] \vec{c} ▶ [210] [100] \vec{a} $[1\overline{2}0]$ WFS-2025 10/61 J. Joos (UGent) Symmetry

Terminology

Miller indices

- Direction [uvw]: lattice vector $\vec{t} = u\vec{a} + v\vec{b} + w\vec{c}$ with smallest integral u, v, w without common divisor
- Net plane (hkl) (Miller indices): intersects coordinate axes at a/h, b/k, c/l (0 if plane is parallel to axis)
- d_{hkl} : distance between two neighbouring (hkl) planes

Crystal coordinates

Metric tensor

- Definition: $g_{ij} = \vec{e}_i \cdot \vec{e}_j$ for a basis e_i
 - Distance between \vec{u} and \vec{v} :

$$d_{uv}^{2} = g_{ij}(u_{i} - v_{i})(u_{j} - v_{j}) = (\vec{u} - \vec{v}) \cdot \boldsymbol{g} \cdot (\vec{u} - \vec{v})$$

• Angle between \vec{u}, \vec{v} and \vec{w} (apex \vec{v}):

$$\cos \theta = \frac{1}{d_{uv}d_{vw}} g_{ij}(u_i - v_i)(w_j - v_j) = \frac{(\vec{u} - \vec{v}) \cdot \boldsymbol{g} \cdot (\vec{w} - \vec{v})}{d_{uv}d_{vw}}$$

- Examples:
 - Euclidian space ℝ³,
 Carthesian basis:
 - $\boldsymbol{g} = \mathbb{1}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \boldsymbol{g} = \boldsymbol{\eta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

J. Joos (UGent)

Symmetry

WFS-2025 12 / 61

Symmetry operations • Leaves all angles and distances (i.e. g) unchanged • Identity: $\vec{r}' = \mathbb{1}_{3}\vec{r}' = \vec{r} \quad \text{or} \qquad \begin{pmatrix} r_{1}'\\ r_{2}'\\ r_{3}' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{1}\\ r_{2}\\ r_{3} \end{pmatrix}$ • Translation: $\vec{r}' = \vec{r} + \vec{T} \quad \text{or} \qquad \begin{pmatrix} r_{1}'\\ r_{2}'\\ r_{3}' \end{pmatrix} = \begin{pmatrix} r_{1} + T_{1}\\ r_{2} + T_{2}\\ r_{3} + T_{3} \end{pmatrix}$ • Rotation: $\vec{r}' = R\vec{r} \quad \text{or} \qquad \begin{pmatrix} r_{1}'\\ r_{2}'\\ r_{3}' \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13}\\ R_{21} & R_{22} & R_{23}\\ R_{31} & R_{32} & R_{33} \end{pmatrix} \begin{pmatrix} r_{1}\\ r_{2}\\ r_{3} \end{pmatrix}$ with det(R) = 1, i.e. $(R \in SO(3))$ and $\cos \varphi = \frac{1}{2} (\operatorname{Tr}(R) - 1)$

Isometries

Augmented columns and matrices

• Combine translation (\vec{w}) and rotation (W), $(W|\vec{w})$ (Seitz symbol):

$$\vec{r}' = W\vec{r} + \vec{w}$$
 or $\begin{pmatrix} r'_1\\r'_2\\r'_3 \end{pmatrix} = \begin{pmatrix} W_{11} & W_{12} & W_{13}\\W_{21} & W_{22} & W_{23}\\W_{31} & W_{32} & W_{33} \end{pmatrix} \begin{pmatrix} r_1\\r_2\\r_3 \end{pmatrix} + \begin{pmatrix} w_1\\w_2\\w_3 \end{pmatrix}$

• Shorthand notation:

$$\vec{r} \to \vec{r} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ \hline 1 \end{pmatrix} \quad \text{and} \quad (W|\vec{w}) \to W = \begin{pmatrix} W_{11} & W_{12} & W_{13} & w_1 \\ W_{21} & W_{22} & W_{23} & w_2 \\ W_{31} & W_{32} & W_{33} & w_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

• Advantage: use 4x4 matrix algebra

- Consecutive isometries: $(V|\vec{v}) \circ (W|\vec{w}) \rightarrow \mathbb{V} \cdot \mathbb{W}$ Inverse isometries: $(W|\vec{w})^{-1} \rightarrow \mathbb{W}^{-1}$

Isometries

Symmetry operations (continued))

J. Joos (UGent)

Screw rotation: rotation axis and direction of translation coincide. E.g.,

Symmetry

$$\mathbf{W} = \begin{pmatrix} \cos\varphi & -\sin\varphi & 0 & 0\\ \sin\varphi & \cos\varphi & 0 & 0\\ 0 & 0 & 1 & w_3\\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

• Inversion:

J. Joos (UGent)

$$\vec{r'} = -\mathcal{P}\vec{r} + \vec{w} = -\mathbb{1}_3\vec{r} + \vec{w} = -\vec{r} + \vec{w}$$

• Rotoinversion: $(S|\vec{0})$ for which det(S) = -1; $S = \mathcal{P}R = R\mathcal{P}$

• (Glide) reflections: $(W|\vec{w})$ for which

$$\begin{cases} \det(W) = -1 \\ \operatorname{Tr}(W) = 1 \\ W \neq \mathcal{P} \end{cases}$$

Symmetry

WFS-2025

16 / 61

WFS-2025

Space group \mathcal{G} : symmetry group of a perfect crystal (all $W = (W|\vec{w})$): 230 possibilities (Fedorov and Schoenflies, 1891)

- Translation group $\mathcal{T} \triangleleft \mathcal{G}$ (i.e. $\mathbb{W}^{-1} \cdot (\mathbb{1}_3 | \vec{T}) \cdot \mathbb{W} = (\mathbb{1}_3 | \vec{T}')) =$ **lattice**
- Point group of crystal G = symmetry group of the bundle of the normals on crystal faces: $G = \{W\}$; isomorphic to $\mathcal{G}/\mathcal{T} =$ crystal class, 32 possibilities
- Holohedry of point group \mathcal{H} :
 - Point group of lattice
 - $G \leq \mathcal{H}$

J. Joos (UGent)

• index $|\mathcal{H}|/|G|$ as small as possible

= **crystal system**: 7 possibilities (triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, cubic)

Symmetry

19/61

WFS-2025

Space groups

Mathematical structure: point groups

				trigonal	$\frac{3}{2}$	C_3	
					3	C_{3i}	
triclinic	1	C_1			32	D_3	
	1	$\frac{C_i}{C_i}$			3m	C_{3v}	
monoclinic	2	C_2			$\bar{3}m$	D_{3d}	
	m	C_s		hexagonal	6	$\overline{C_6}$	
h h h : .	2/m	$\frac{C_{2h}}{D}$			ē	C_{2k}	
orthornombic	222	D_2			6/m	C_{Sh}	
	mmm	D_{2v}			622	D_{c}	
tetragonal	4	$\frac{D_{2n}}{C_4}$			6mm	C_{c}	
	4	S_4			$\overline{6}m2$	D_{2k}	
	4/m	C_{4h}			6/mmm	D_{3n}	
	422	D_4		cubic	<u>- 0/ 1111111</u> 93	$\frac{D_{6h}}{T}$	
	4mm	C_{4v}		cubic	25 m3	1 T.	
	$\overline{4}2m$	D_{2d}			1110	Γ_h	
	4/mmm	D_{4h}			402		
					43m	I_d	
					m3m	O_h	
	F)		Symmetry			WES 2025	

Space groups Mathematical structure: lattices

• Bases:

- Conventional basis: As used by "International Tables A" (symmetry-adapted, i.e. user friendliness)
- Primitive basis: All lattice vectors are *integral* linear combinations of basis vectors
- Lattices:
 - Primitive (P): primitive basis = conventional basis
 - Centered: primitive basis \neq conventional basis
 - Base centered $C(\frac{1}{2}, \frac{1}{2}, 0)$ (or $A(0, \frac{1}{2}, \frac{1}{2}), B(\frac{1}{2}, 0, \frac{1}{2})$) Face centered $F(0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2})$ and $(\frac{1}{2}, \frac{1}{2}, 0)$ Body centered $I(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ Rhombohedral $R(\frac{2}{3}, \frac{1}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$

Space groups Mathematical structure: lattices

Example: FCC, conventional vs. primitive cell

Space groups Mathematical structure: lattices

• 14 Bravais lattices

20220	lettico peremotora	contring
	lattice parameters	Centring
cubic primitive (cP)	$a = b = c, \ \alpha = \beta = \gamma = 90^{\circ}$	
cubic body-centred (cI)	$a = b = c, \ \alpha = \beta = \gamma = 90^{\circ}$	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
cubic face-centred (cF)	$a=b=c, \alpha=\beta=\gamma=90^\circ$	$(0, \frac{1}{2}, \frac{1}{2},), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0)$
tetragonal primitive (tP)	$a = b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$	
tetragonal body-centred (tI)	$a = b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
orthorhombic primitive (oP)	$a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$	
orthorhombic body-centred (oI)	$a \neq b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
orthorhombic base-centred (oC)	$a \neq b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$	$(\frac{1}{2}, \frac{1}{2}, 0)$
orthorhombic face-centred (F)	$a \neq b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$	$(0, \frac{1}{2}, \frac{1}{2},), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0)$
hexagonal primitive (hP)	$a = b \neq c, \ \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
trigonal (rhombohedral) (hR)	$a = b \neq c, \ \alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	$\left(\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$
rhombohedral (primitive) (rP)	$a=b=c, \alpha=\beta=\gamma eq 90^\circ$	
monoclinic primitive (mP)	$a \neq b \neq c, \ \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	
monoclinic base-centred (mC)	$a \neq b \neq c, \ \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	$(\frac{1}{2}, \frac{1}{2}, 0)$
triclinic (aP)	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	

J. Joos (UGent)

WFS-2025 24 / 61

Basics of crystallography

Practical use: Crystallographic Information File (CIF)

- Basic information: reference, name, chemistry, space group, $a, b, c, \alpha, \beta, \gamma$
- Equivalent positions

• =qai arono positions			
	_symmetry_equiv_pos_as_xyz		
	x,y,z		
	y,z,x		
	z,x,y		
	x,z,y		
	y,x,z		
	z,y,x		
	x,-y,-z		
	y,-z,-x		
	z,-x,-y		
	x,-z,-y		
	y,-x,-z		
	z,-y,-x		
	-x,y,-z		
	-y,z,-x		
	-z,x,-y		
	-x,z,-y		
	-y,x,-z		
	- z , y , - x		
	-x,-y,z		
	-y,-z,x		
	-z,-x,y		
	-x,-z,y		
	-y,-x,z		
	-z,-y,x		
	x,1/2+y,1/2+z		
J. Joos (UGent)	Symmetry	WFS-2025	30 / 61
	1/2+x,1/2+y,z		
	y,1/2+z,1/2+x		
	1/2+y,z,1/2+x		
	1/2+y $1/2+z$ y		

Basics of crystallography

Practical use: Crystallographic Information File (CIF)

	ff Site	Coordinates
letter	symmetry	(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0)
		(X,y,Z) (-X,-y,Z) (-X,y,-Z) (X,-y,-Z)
		(Z,X,y) (Z,-X,-y) (-Z,-X,y) (-Z,X,-y)
96 i	1	(y,z,x) (-y,z,-x) (y,-z,-x) (-y,-z,x)
30	1	(y,x,z) (-y,-x,z) (y,-x,-z) (-y,x,-z)
		(X,Z,Y) (-X,Z,-Y) (-X,-Z,Y) (X,-Z,-Y)
		(Z,y,X) (Z,-y,-X) (-Z,y,-X) (-Z,-y,X)
		(X,X,Z) (-X,-X,Z) (-X,X,-Z) (X,-X,-Z)
48 h	m	(Z,X,X) (Z,-X,-X) (-Z,-X,X) (-Z,X,-X)
		(x,z,x) (-x,z,-x) (x,-z,-x) (-x,-z,x)
24	2	(x,1/4,1/4) (-x,3/4,1/4) (1/4,x,1/4) (1/4,-x,3/4)
24 y	2.111 111	(1/4,1/4,x) (3/4,1/4,-x)
24	0	(x,0,0) (-x,0,0) (0,x,0) (0,-x,0)
24 T	2.m m	(0,0,x) (0,0,-x)
16 e	.3m	(x,x,x) (-x,-x,x) (-x,x,-x) (x,-x,-x)
4 d	-43m	(3/4,3/4,3/4)
4 c	-43m	(1/4,1/4,1/4)
4 b	-43m	(1/2,1/2,1/2)
4 a	-43m	(0,0,0)

Table of Contents

Symmetry and quantum mechanics
Crystal symmetry
Atomic symmetry

Spherical symmetry

J. Joos (UGent)

• O(3): orthogonal matrices $(R^T = R^{-1})$ preserve inner product: represent rotations/reflections, det $R = \pm 1$

$$\begin{pmatrix} x'\\y'\\z' \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13}\\ R_{21} & R_{22} & R_{23}\\ R_{31} & R_{32} & R_{33} \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix}$$

- SO(3): special orthogonal matrices, rotations only, detO = 1
- If R is rotation over angle α along axis \vec{n} :

$$U(R) = \exp{-\frac{\mathrm{i}}{\hbar}\alpha\left(\hat{\vec{\ell}}\cdot\vec{n}\right)},$$

i.e. angular momenta are generators for rotations

Spherical symmetric Hamiltonian: $\left[\hat{H}, U(R)\right] = \left[\hat{H}, \hat{\ell}_i\right] = 0 \quad (i = x, y, z)$ • Its of O(3) are labels for energy eigenvalues • SO(3): integer representations: $\ell = 0$ $(s), \ell = 1$ $(p), \ell = 2$ (d), ...• SU(2): special unitary matrices $(U^{\dagger} = U^{-1})$, homomorphic (2:1) with SO(3): also half-integer representations (needed for spin, see further)

Spherical symmetry

• IR ℓ is $(2\ell + 1)$ -dimensional and basis functions fulfill

$$\hat{\ell}^{2} |\ell m_{\ell}\rangle = \hbar^{2} \ell (\ell + 1) |\ell m_{\ell}\rangle$$
$$\hat{\ell}_{z} |\ell m_{\ell}\rangle = \hbar m_{\ell} |\ell m_{\ell}\rangle$$

• Also useful:

$$\hat{\ell}_{\pm} \left| \ell m_{\ell} \right\rangle = \left(\hat{\ell}_x \pm \mathrm{i} \hat{\ell}_y \right) \left| \ell m_{\ell} \right\rangle = \hbar \sqrt{\ell (\ell + 1) - m_{\ell} (m_{\ell} \pm 1)} \left| \ell m_{\ell} \pm 1 \right\rangle$$

Symmetry

Spherical symmetry

J. Joos (UGent)

• Wigner- \mathcal{D} matrices:

$$U(R) \left| \ell m_{\ell} \right\rangle = \sum_{m' = -\ell}^{\ell} \mathcal{D}_{m'm}^{(\ell)}(R) \left| \ell m_{\ell} \right\rangle$$

• Clebsch-Gordan series:

$$(\mathcal{D}^{(\ell_1)} \otimes \mathcal{D}^{(\ell_2)})_{m_1 m_2, m'_1 m'_2} = \mathcal{D}^{(\ell_1)}_{m_{\ell_1} m_{\ell_{1'}}}(R) \mathcal{D}^{(\ell_2)}_{m_{\ell_2} m_{\ell_{2'}}}(R) = \sum_{\ell = |\ell_1 - \ell_2|}^{\ell_1 + \ell_2} \sum_{m, m' = -\ell}^{\ell} \langle \ell_1 \ell_2 m_1 m_2 | \ell_1 \ell_2 \ell m \rangle \times \langle \ell_1 \ell_2 m'_1 m'_2 | \ell_1 \ell_2 \ell m' \rangle \mathcal{D}^{(\ell)}_{mm'}(R)$$

shorthand notation:

J. Joos (UGent)

$$\ell_1 \otimes \ell_2 = \bigoplus_{\ell = |\ell_1 - \ell_2|}^{\ell_1 + \ell_2} \ell$$

Symmetry

WFS-2025 38 / 61

WFS-2025

$$\hat{H}=\hat{H}_0+\hat{H}_1+\hat{H}_2$$

• Bohr Hamiltonian:

$$\hat{H}_0 = \sum_{i=1}^N \left(\frac{-\hbar^2}{2m_e} \hat{\nabla}_i^2 - \frac{Ze^2}{4\pi\epsilon_0 r_i} \right)$$

• Inter-electronic Coulomb repulsion:

$$\hat{H}_1 = \frac{1}{2} \sum_{i=1}^{N} \sum_{i=j}^{N} \frac{e^2}{4\pi\epsilon_0 |\vec{r_i} - \vec{r_j}|}$$

• Spin-orbit coupling:

J. Joos (UGent)

$$\hat{H}_2 = \sum_{i=1}^N \xi(r_i) \hat{\vec{\ell}}_i \cdot \hat{\vec{s}}_i$$

Symmetry

Atomic Hamiltonian Good quantum numbers

$$\hat{H} = \hat{H}_0 + \hat{H}_1 + \hat{H}_2$$

• Single-electron quantum numbers:

• $\ell_i, m_{\ell_i}, s_i, m_{s_i}$ good quantum numbers for eigenstates of \hat{H}_0 :

$$\left[\hat{\ell}_i^2, \hat{H}_0\right] = \left[\hat{\ell}_{z_i}, \hat{H}_0\right] = \left[\hat{s}_i^2, \hat{H}_0\right] = \left[\hat{s}_{z_i}, \hat{H}_0\right] = 0$$

• No good quantum numbers for $\hat{H}_1 \ (\propto 1/r_{ij})$:

$$\left[\hat{\ell}_i^2, \hat{H}_1\right] \neq 0 \quad \text{and} \quad \left[\hat{\ell}_{z_i}, \hat{H}_1\right] \neq 0$$

J. Joos (UGent)

Symmetry

WFS-2025

Atomic Hamiltonian Good quantum numbers $\hat{H} = \hat{H}_0 + \hat{H}_1 + \hat{H}_2$ • Single-electron quantum numbers: • $\ell_i, m_{\ell_i}, s_i, m_{s_i}$ good quantum numbers for eigenstates of \hat{H}_0 • No good quantum numbers for $\hat{H}_1 (\propto 1/r_{ij})$ • Multi-electron quantum numbers for eigenstates of \hat{H}_1 : • L, M_L good quantum numbers for eigenstates of \hat{H}_1 : • Spin-orbit coupling • $\ell_i, m_{\ell_i}, s_i, m_{s_i}, L, M_L, S, M_S$ no good quantum numbers for $\hat{H}_2 (\propto \hat{\vec{L}} \cdot \hat{\vec{S}})$ • Further couple momenta: $\hat{\vec{j}_i} = \hat{\ell}_i + \hat{\vec{s}}_i \qquad \hat{\vec{J}} = \hat{\vec{L}} + \hat{\vec{S}}$ • Both single-electron quantum numbers j_i and m_{j_i} as well as multi-electron quantum numbers J and M_J are good: $[\hat{j}_i^2, \hat{H}_2] = [\hat{j}_{z_i}, \hat{H}_2] = [\hat{J}^2, \hat{H}_2] = [\hat{J}_z, \hat{H}_2] = 0$

42 / 61

S-2025

J. Joos (UGent)

$$\hat{H} = \hat{H}_0 + \hat{H}_1 + \hat{H}_2$$

• Bohr Hamiltonian:

$$\hat{H}_0 = \sum_{i=1}^N \left(\frac{-\hbar^2}{2m_e} \hat{\nabla}_i^2 - \frac{Ze^2}{4\pi\epsilon_0 r_i} \right)$$

• Inter-electronic Coulomb repulsion:

$$\hat{H}_1 = \frac{1}{2} \sum_{i=1}^{N} \sum_{i=j}^{N} \frac{e^2}{4\pi\epsilon_0 |\vec{r}_i - \vec{r}_j|}$$

• Spin-orbit coupling:

J. Joos (UGent)

$$\hat{H}_2 = \sum_{i=1}^{N} \xi(r_i) \hat{\vec{\ell}}_i \cdot \hat{\vec{s}}_i$$

Symmetry

WFS-2025

Towards approximate solutions with perturbation theory

$$\hat{H} = \hat{H}_0' + \hat{H}_1' + \hat{H}_2$$

• Central field Hamiltonian:

$$\hat{H}'_{0} = \left(\sum_{i=1}^{N} \frac{-\hbar^{2}}{2m_{e}} \hat{\nabla}_{i}^{2} - \frac{Ze^{2}}{4\pi\epsilon_{0}r_{i}}\right) + \sum_{i=1}^{N} V(r_{i})$$

• Russell-Saunders Hamiltonian:

$$\hat{H}'_1 = \frac{1}{2} \sum_{i=1}^N \sum_{i=j}^N \frac{e^2}{4\pi\epsilon_0 |\vec{r_i} - \vec{r_j}|} - \sum_{i=1}^N V(r_i)$$

• Spin-orbit coupling:

J. Joos (UGent)

$$\hat{H}_2 = \sum_{i=1}^N \xi(r_i) \hat{\vec{\ell}}_i \cdot \hat{\vec{s}}_i$$

Symmetry

Atomic Hamiltonian

Towards approximate solutions with perturbation theory

• Different choices rationalized from "coupling schemes"

	$\Pi = \Pi_0 +$	$-n_1 + n_2$
	term	multiplet
	splitting (RS)	splitting (SO)
3d	1-10 eV	0.1 eV
4d	1-10 eV	$0.1-1 \ \mathrm{eV}$
5d	1-10 eV	$1 \mathrm{eV}$
4f	1-10 eV	$0.1-1 \ \mathrm{eV}$
5f	1-10 eV	$1 \mathrm{eV}$
5p	1-10 eV	$1 \mathrm{eV}$
6p	1-10 eV	$1 \mathrm{eV}$

J. Joos (UGent)

WFS-2025

Towards approximate solutions with perturbation theory

$$\hat{H} = \hat{H}_0' + \hat{H}_1' + \hat{H}_2$$

• For most atoms $\hat{H}_0' \gg \{\hat{H}_1', \hat{H}_2\}$ holds.

• Perturbation sequence in three steps:

	coupling scheme	LS	jj	
	step 0	$\hat{H}_0' \ (\ell_i, m_{\ell_i}, s$	(i, m_{s_i})	
	step 1	$\hat{H}_1' (L, M_L, S, M_S)$	$\hat{H}_2(j_i,m_{j_i})$	
	step 2	$\hat{H}_2 (J, M_J)$	$\hat{H}_1'(J, M_J)$	
			J	
os (U	Gent)	Symmetry	WFS-2025	47

Atomic Hamiltonian Towards approximate solutions with perturbation theory

J. Jo

$$\hat{H} = \hat{H}_0' + \hat{H}_1' + \hat{H}_2$$

- For most atoms $\hat{H}'_0 \gg \{\hat{H}'_1, \hat{H}_2\}$ holds.
- Perturbation sequence in three steps:

coupling scheme	LS	jj
step 0	$\hat{H}_0' \ (\ell_i, m_{\ell_i}, s$	(i, m_{s_i})
step 1	$\hat{H}_1' \ (L, M_L, S, M_S)$	$\hat{H}_2(j_i, m_{j_i})$
step 2	$\hat{H}_2 \ (J, M_J)$	$\hat{H}_1'(J, M_J)$

47 / 61

J.

Towards approximate solutions with perturbation theory

$$\hat{H} = \hat{H}_0' + \hat{H}_1' + \hat{H}_2$$

• For most atoms $\hat{H}_0' \gg \{\hat{H}_1', \hat{H}_2\}$ holds.

• Perturbation sequence in three steps:

coupling scheme	LS	jj	
step 0	$\hat{H}_0' \ (\ell_i, m_{\ell_i}, s)$	(i, m_{s_i})	
step 1	$\hat{H}_1' (L, M_L, S, M_S)$	$\hat{H}_2 \ (j_i, m_{j_i})$	
step 2	$\hat{H}_2 (J, M_J)$	$\hat{H}_1'(J, M_J)$	
(Cont)	Symmetry	WES 2025	47

Multi-electron basis states: LS coupling Step 0: central field Hamiltonian

$$\hat{H}'_0 \Psi = E_0 \Psi$$
 with $\hat{H}'_0 = \sum_{i=1}^N \hat{h}'_0(i)$

• Independent particle model (IPM):

 $h'_0(i)\psi_i(i) = \epsilon_i\psi_i(i)$ ($\psi_i(i)$ orbitals / single – electron wave functions)

• Radial symmetry (O(3)):

$$\psi_{n_i\ell_i m_{l_i}s_i m_{s_i}}(x_i) = R_{n_i\ell_i}(r_i)Y_{\ell_i m_{\ell_i}}(\Omega_i)\chi_{s_i m_{s_i}}(i)$$

• Multi-electron wave function:

$$\Psi_{\text{centr.field}}(x_1,\ldots,x_N) = \prod_{i=1}^N \psi_{n_i\ell_i m_{\ell_i} s_i m_{s_i}}(x_i)$$

• Total energy: $E_{\text{centr.field}} = \sum_{i=1}^{N} \epsilon_{n_i \ell_i m_{\ell_i} s_i m_{s_i}}$ J. Joos (UGent) Symmetry

WFS-2025 48/61

Multi-electron basis states: LS coupling

Step 0: central field Hamiltonian

J. Joos (UGent)

- Independent particle model (IPM)
- Radial symmetry (O(3))
- Multi-electron wave function: Slater determinants
 - Pauli exclusion principle must be respected!

$$\Psi_{\text{centr.field}}(x_1, \dots, x_N) = \hat{\mathcal{A}} \prod_{i=1}^N \psi_{n_i \ell_i m_{\ell_i} s_i m_{s_i}}(x_i)$$

$$= \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(1) & \psi_2(1) & \dots & \psi_N(1) \\ \psi_1(2) & \psi_2(2) & \dots & \psi_N(2) \\ \vdots & \vdots & \dots & \vdots \\ \psi_1(N) & \psi_2(N) & \dots & \psi_N(N) \end{vmatrix}$$

$$= |\psi_1 \psi_2 \dots \psi_N|$$

Symmetry

WFS-2025

Multi-electron basis states: LS coupling Step 0: central field Hamiltonian

- Independent particle model (IPM)
- Multi-electron wave function: Slater determinants
- Consequence of \hat{H}'_0 : aufbau principle

Multi-electron basis states: LS coupling

Step 0: central field Hamiltonian

Multi-electron basis states: LS coupling Step 1: Russell-Saunders Hamiltonian

$$\hat{H} = \hat{H}_0' + \hat{H}_1' + \hat{H}_2$$

- For most atoms $\hat{H}'_0 \gg \{\hat{H}'_1, \hat{H}_2\}$ holds.
- Perturbation sequence in three steps:

coupling scheme	LS	jj
step 0	$\hat{H}_0' \ (\ell_i, m_{\ell_i}, s$	(i, m_{s_i})
step 1	$\hat{H}_1' \ (L, M_L, S, M_S)$	$\hat{H}_2 \ (j_i, m_{j_i})$
step 2	$\hat{H}_2 \ (J, M_J)$	$\hat{H}_1'(J, M_J)$

J. Joos (UGent)

WFS-2025

Multi-electron basis states: LS coupling

Step 1: Russell-Saunders Hamiltonian

J. Joos (UGent)

• Select a configuration of interest, $n_1 \ell_1^{N_1} \dots n_r \ell_r^{N_r}$, with $N_1 + \dots + N_r = N$ and degeneracy

$$\prod_{i=1}^{r} \binom{4\ell_i + 2}{N_i} = \prod_{i=1}^{r} \frac{(4\ell_i + 2)!}{N_i!(4\ell_i + 2 - N_i)!}$$

• Diagonalization of $\hat{H_1}'$ requires basis transformation:

$$\left|\begin{smallmatrix} m_{s_1} & \cdots & m_{s_N} \\ m_{\ell_1} & \cdots & m_{\ell_N} \end{smallmatrix}\right| \to \left| LM_L SM_S \right\rangle$$

• Allowed L and S values found by coupling,

$$S = s_1 + s_2, s_1 + s_2 - 1, \dots, |s_1 - s_2|$$
$$L = \ell_1 + \ell_2, \ell_1 + \ell_2 - 1, \dots, |\ell_1 - \ell_2|$$

Symmetry

however within restrictions by Pauli exclusion principle (!)

Multi-electron basis states: LS coupling Step 2: spin-orbit Hamiltonian

$$\hat{H} = \hat{H}_0' + \hat{H}_1' + \hat{H}_2$$

- For most atoms $\hat{H}'_0 \gg \{\hat{H}'_1, \hat{H}_2\}$ holds.
- Perturbation sequence in three steps:

coupling scheme	LS	jj
step 0	$\hat{H}_0' \ (\ell_i, m_{\ell_i}, s$	$_i, m_{s_i})$
step 1	$\hat{H}_1' \ (L, M_L, S, M_S)$	$\hat{H}_2 \ (j_i, m_{j_i})$
step 2	$\hat{H}_2 (J, M_J)$	$\hat{H}_1'(J, M_J)$

Example: Configurations, terms and multiplets for N

- Number of Slater determinants: $\frac{6!}{3!3!} = 20$
- Pauli's exclusion principle must be respected: use (M_L, M_S) table:

	2	1	0
$\frac{3}{2}$			(10-1)
			4S
$\frac{1}{2}$	$(\overset{+-+}{1}\overset{+-+}{1})$	$(\stackrel{+}{1}\stackrel{-}{1}\stackrel{+}{-}\stackrel{+}{1}), (\stackrel{+}{1}\stackrel{+}{0}\stackrel{-}{0})$	$(\ddot{1}\ddot{0}\ddot{-}\ddot{1}), (\ddot{1}\ddot{0}\ddot{-}\ddot{1}), (\ddot{1}\ddot{0}\ddot{-}\ddot{1})$
	^{2}D	^{2}D ^{2}P	${}^{4}S$ ${}^{2}D$ ${}^{2}P$

• This means e.g. that

J. Joos (UGent)

$$|p^{3}(^{2}D), M_{L} = 1, M_{S} = \frac{1}{2} = c_{1}(\overset{+}{11} - \overset{+}{1}) + c_{2}(\overset{+}{100})$$
$$|p^{3}(^{2}P), M_{L} = 1, M_{S} = \frac{1}{2} = c_{3}(\overset{+}{11} - \overset{+}{1}) + c_{4}(\overset{+}{100})$$

i.e. terms are multiconfigurational wave functions
J. Joos (UGent) Symmetry WF

Example: Configurations, terms and multiplets for N_{Multiplets}

• Angular momentum coupling: $J = |L - S| \dots L + S$ • ⁴S (L = 0, S = 3/2): J = 3/2, no splitting • ²D (L = 2, S = 1/2): J = 5/2, 3/2 or $2 \otimes 1/2 = 5/2 \oplus 3/2$ • ²P (L = 1, S = 3/2): J = 3/2, 1/2 or $1 \otimes 3/2 = 3/2 \oplus 1/2$

Symmetry

WFS-2025

Example: Configurations, terms and multiplets for N Energy level scheme

