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Molecules

ĤΨ(r) = EΨ(r)

introducing basis: Hab

what is the range of indexes a,b?

Point group symmetry and labels: they help us reduce the size and classify
solutions: FαCα = ϵSαCα

in infinite crystal Φ(x + Rn) = Φ(x), but we don’t want a and b to run infinite.
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Symmetry - Space groups

Figure: NiO. Space group No. 225 Fm-3m
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The Bravais lattices

An infinite three-dimensional lattice may be defined in therms of linear independent
real basic lattice vectors a, b, c

tn = n1a1 + n2a2 + n3a3

where n = (n1, n2, n3)
”Lattice points” – points in R3 having lattice vectors as their position vectors
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Space group and it’s Abelian T subgroup

Every symmetry operation is pair of R(T )-rotation and tn-pure translation

R(T ) ·

 x
y
z

+

 tx
ty
tz

 =

 x ′

y ′

z ′


shorter

R(T ) · x + t(T ) = x ′

{R(T )|t(T )}x = x ′
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Born and von Karman cyclic boundary conditions

Small parallelepiped (4x4x4 con-
ventional unit cell).

For every eigenfunction of electronic Hamil-
tonian Ĥe

ψ(r) = ψ(r+N1a1) = ψ(r+N2a2) = ψ(r+N3a3)

Were N1,N2,N3 are very large integers.
This means that symmetry operator

P(T )ψ(r) = ψ({R(T )|t(T )}−1r)

P({1|Njaj}) = P({1|0})
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Introducing translational symmetry

P({1|Njaj}) = P({1|0})

P({1|tn}) = P({1|0})P({1|tn}) = P({1|tn +m1N1a1 +m2N2a2 +m3N3a3})

it holds for any tn and any set of integers m1,m2,m3 therefore we have finite number
N = N1N2N3 of different P({1|tn}) operators

P({1|n1a1 + n2a2 + n3a3}) 0 ≤ nj < Nj , j = 1, 2, 3.
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Introducing translational symmetry

P({1|Njaj}) = P({1|aj})Nj = P({1|0}) for j = 1, 2, 3

Considering that T group is finite and Abelian it follows that we have one-dimensional
representation

Γ({1|aj}) = [cj ] and c
Nj

j = 1

so that
cj = exp(−2πipj/Nj), j = 1, 2, 3

where pj ∈ {0, 1, . . . ,Nj − 1} is an integer . Finally

Γ({1|njaj}) = [exp(−2πipjnj/Nj)]
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Introducing translational symmetry

Γ({1|njaj}) = [exp(−2πipjnj/Nj)]

Γ({1|tn}) =
[
e−2πi [(p1n1/N1)+(p2n2/N2)+(p3n3/N3)]

]
tn = n1a1 + n2a2 + n3a3

There are N = N1N2N3 different sets of integers (p1, p2, p3) which label N irreps of
group T .
We define allowed K vectors (CAPITAL K )

K · tn = 2π[(p1n1/N1) + (p2n2/N2) + (p3n3/N3)] where Kj = 2πpj/Nj

ΓK ({1|tn}) =
[
e−iK ·tn

]
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Bloch theorem

ΓK ({1|tn}) =
[
e−iK ·tn

]
K = K1b1 + K2b2 + K3b3 and ambj = 2πδmj

Basic lattice vectors of the reciprocal lattice

b1 =
2πa2 × a3

a1 · (a2 × a3)
b2 =

2πa3 × a1
a1 · (a2 × a3)

b3 =
2πa1 × a2

a1 · (a2 × a3)

K · tn = 2π[(p1n1/N1) + (p2n2/N2) + (p3n3/N3)] where Kj = 2πpj/Nj

Figure: Brillouin zone for hexagonal lattice (source wiki)
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Bloch theorem

ΓK ({1|tn}) =
[
e−iK ·tn

]
P({1|tn})ψk

1 (r) = Γk({1|tn})ψk
1 (r) = e−ik·tnψk

1 (r)

P({1|tn})ψk
1 (r) = ψk

1 ({1|tn}−1r) = ψk
1 (r − tn)

ψk
1 (r − tn) = e−ik·tnψk

1 (r)

Bloch functions

This is true for Bloch wave: ψ1k(r) = ek·ru1k(r) where uk(r) = uk(r − tn) for any tn
The electronic energy eigenfunctions must be a basis functions of the irreducible
representations ΓK of group T
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Bloch theorem

Ĥ(r)ψlk(r) = El(k)ψlk(r)
ψlk(r) = e ik·rulk(r) where ulk(r) = ulk(r − tn)
ψl ,(k+Ki )(r) = ψlk(r)
Ki reciprocal lattice, k reciprocal space

Example of Brillouin zones in 3D: FCC,

Brillouin zone for hexagonal
lattice (Fig. source: wiki)
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HF- equations in periodic boundary conditions

HF-Roothaan

How HF-Roothaan equations will look like FC = ϵSC ?
For HFR we need a basis set

Localized basis set
We can define set {φk

1 (r), . . . , φ
k
m(r)} of localized functions in the unit reference

cell:

ψµk(r) =
∑
tn∈N

exp(ik · tn)φk
µ(r − tn)

The sum goes over all tn vectors of the direct lattice in the unit reference cell

F (k)C (k) = ϵ(k)S(k)C (k)
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Fourier Transform of a function in BvK ”Box”

Lets take a periodic function f (r) and make a FT and FT−1

f̃ (G ) =
1

Ω

∫
f (r)e−iGrdr

f (r) =
∫

f̃ (G )e iGrdG

We can select a discrete G grid centred around origin of coordinate system in
reciprocal lattice.

Gm = m1b1 +m2b2 +m3b3 mj = 0, 1, . . . ,Mj − 1
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FT along one direction

Parallelepiped (4x4x4 conventional
unit cell). Length of x edge is L1 =
N1|a1|

f (x) → fm = f (xm)

f̃ (q) → f̃n = f̃ (qn)

f (xm) is sampled on xm = m L1
M1

where m =
0, . . . ,M1 − 1
f̃ (qn) is sampled on qn = n 2π

L1
where n =

0, . . . ,M1 − 1
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f (xm) is sampled on xm = m L1
M1

where m = 0, . . . ,M1 − 1

f̃ (qn) is sampled on qn = n 2π
L1

where n = 0, . . . ,M1 − 1

f̃ (qn) =
1
M1

∑M1−1
m=0 fme

−i(2πn)m/M1 (k-space)

f (xm) =
∑M1−1

n=0 f̃ne
i(2πn)m/M1 (x-space)
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Discrete FT in 3D

f̃ (n1, n2, n3) =
1

M

Mj−1∑
m1,m2,m3=0

fm1,m2,m3e
−i(2πn1)m1/M1e−i(2πn2)m2/M2e−i(2πn3)m3/M3

(k-space)

f (xm1 , xm2 , xm3) =

Mj−1∑
n1,n2,n3=0

f̃n1,n2,n3e
i(2πn1)m1/M1e i(2πn2)m2/M2e i(2πn3)m3/M3

(x-space)
where M = M1M2M3, j = 1, 2, 3.
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Sampling

Nyquist-Shannon-Kotelnikov Sampling Theorem

A continuous signal that has been band-limited (i.e.), it contains no frequencies higher
than a certain fmax can be perfectly reconstructed from its discrete samples if the
sampling rate fs is at least twice the highest frequency component of the signal
fs ≥ 2fmax . If the signal is sampled below this rate, aliasing occurs, meaning different
frequency components overlap and distort the original signal.
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Plane Waves Basis

Bloch theorem

ψlk(r) = e ik·rulk(r) where ulk(r) = ulk(r−tn)

ulk(r) =
∑

|G |≤Gmax

clk(G ) exp{iG · r}

G is a grid of G vectors.

ψlk(r) = e ik·rulk(r) =
∑

|G |≤Gmax

clk(G )e i(k+G)·r
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How to set Gmax

We can use energy of a particle in a box
Ecut =

ℏ2
2m |Gmax |2 to set λmin = 2π

|Gmax |
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Ecut=const, variation of lattice constant

We will keep Ecut =
ℏ2
2m |Gmax |2 constant and
change the size of the cell:
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Ecut=const, variation of lattice constant

Increase of cell size:

finer (denser)
k-points grid

A larger basis set can
cause the energy vs.
lattice constant
function to exhibit
artificial behaviour.
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Charge density

Let us set Gmax = 2mEcut/ℏ2. In case of single determinant KS-DFT with orbitals

ψlk(r) = e ik·rulk(r) =
∑

|G |≤Gmax

clk(G )e i(k+G)·r

we can calculate charge density

n(r) =
∑
l ,k

flkψ
∗
lk(r)ψlk(r)

We will apply convolution theorem of Fourier transform

ñ(G ) =
∑
l ,k

∑
|G ′|≤Gmax

fl ψ̃lk(G ′)ψ̃lk(G − G ′)

Maximal value |G − G ′| = 2max |G |. Therefore for charge density we need denser grid

ℏ2

2m
|G |2 ≤ 4Ecut

Marek Krośnicki, Valera Veryazov Periodic HF/DFT



24/34

How to select k grid, 4x4x1

5

ΨAB = Ψab,n = Ψab,k , where A,B - belongs to a large unit cell, a,b - belongs to
primitive unite cell, n - number of unit cell, k - k-point corresponding to this unit cell
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Nyquist-Shannon and k − points connection

k-point sampling must be fine enough to accurately reconstruct the energy bands
and density of states.

If the k-point grid is too coarse (below the ”Nyquist rate”), important details of
the band structure can be missed or misrepresented (aliasing effects), leading to
errors in total energy etc.

Metallic systems require denser k-point grids because

Insulators and semiconductors can tolerate coarser grids, but too few k-points may
still lead to incorrect band gap estimations.
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Example of Brillouin zones in 3D: FCC

(Fig. source: wiki)

What are the points to use for integration? What are the points to use for presenting
bands?
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Finite k-grids

numerical integration of Brillouin zone (BZ) over a discrete grid of k-points

1

Ωk

∫
BZ

dk ≈ 1

Nk

∑
k

. . .

A calculation with 8 k-points is very similar to large unit cell calculation,
containing 8 primitive unit cells. If k-points are generated as a result of expanding
the primitive unit cell 2x2x2, it is identical to calculation with a largre unit cell of
the same size.
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Γ point calculations

Can one make calculation of NaCl with primitive unit cell and one k-point? The
result will be very strange, since for example, there is no interaction between Na
and Na.

If one uses not a primitive unit cell of NaCl, but say, expanded by 8x8x8, it is
enough to use only one Gamma point

Can one make calculation of a huge unit cell with and one k-point?

if the function is fluctuating a lot, one needs more points for integration.
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Cyclic model (obsolete and not used!)

Cyclic model: the topology of space makes a loop, so one has a circle of atoms
instead of a linear chain. Distance larger than a translation vector (size of the
cycle) does not exit.

Periodic model: a unit cell is periodically repeated.

Does cyclic model identical to periodic model? No!

Think about interactions! What is the ’radius’ of Coulomb? Overlap ? Density?

Not all interactions/terms are cell-periodic
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Hamiltonians used in connection to periodic model

TB - tight binding

Semi-empirical

HF

DFT

local MP2, CC, with excitations only in some area.
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Periodic HF equations

F̂ = T̂ + V̂ + Ĵ − K̂ ,
kinetic, one-electron interaction with nuclei, Coulomb and Exchange.

if µ is an index for an atomic orbital in zero cell, ν is an index for an atomic orbital
located in cell T:

Fµν(k) =
∑
T

e ikTFµν(T)

Coulomb is local operator, but exchange requires integration over whole space. So,
what is ’whole space’ in periodic model? If integration of exchange is not limited, it
diverges..
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Band structure, practical aspects

Insulators

Metals

Mott insulators

’failure’ of band theory: NiO

band theory and symmetry of the crystal
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One-electron picture vs N-electron picture

The language of one-electron energies (HOMO-LUMO, band structure, DOS) is
simple, intuitive, but not accurate.
The total energy is not the sum of one-electron terms. So, for accurate description of
electron excitations one needs not only the ground state, but also excited states.
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Software for periodic calculations

CASTEP

CRYSTAL

CP2K

Gaussian

pySCF

Quantum ESPRESSO

Turbomole

VASP

WIEN2k
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